@

Development of Online Modules for Teaching
Blockchain

Oneal Douglin!, Shuchen Liu!, Dave Emdin?, Alfonso D. Meraz?, Yu-
Chung Chang-Hou?'", Alejandro Strachan?

!pasadena City College, Pasadena, CA 91106, USA

2Community College of Philadelphia, Philadelphia, PA 19130, USA
3Purdue University, West Lafayette, IN 47906, USA

*YXCHANG @pasadena.edu

Abstract:

Blockchain technology enables the creation of a distributed and tamper-proof ledger, even in the presence
of untrusted agents. While much financial resources and attention are devoted to blockchain tools, the
underlying technology is not well understood by the general population. This paper presents a newly
developed online tool that allows users to learn and create their own blockchain, with a graphical user
interface and code. The module is freely available on nanoHUB.org and describes all components of the
blockchain, including the SHA256, Proof of Work, and other features that enable the blockchain to
function as a tamper-proof ledger. This tool has been utilized to instruct students without prior knowledge
of blockchain technology, and the survey of students’ responses demonstrates that this tool is an effective
way of teaching the general population about blockchain technology.

Keywords: Blockchain, SHA256, Proof of Work, online education, collaborative research
© 2023 under the terms of the J ATE Open Access Publishing Agreement

Introduction

Blockchain technology has garnered significant attention in recent years due to its decentralized and
secure approach to recording and verifying transactions, revolutionizing various industries [1]. The
importance of blockchain lies in its ability to enhance transparency through decentralization, ensure
cryptographic security for immutability, enable the potential of cryptocurrencies like Bitcoin and
Ethereum, and streamline transactions for greater speed and efficiency. It can speed up international
transactions and can protect against inflation [2-4]. Walmart Canada applied blockchain to solve a
common logistics nightmare [5].

To delve deeper into the technical aspects and original concepts behind Bitcoin and Ethereum, it is
recommended to refer to their respective white papers. The Bitcoin white paper, titled "Bitcoin: A Peer-
to-Peer Electronic Cash System," was published by Satoshi Nakamoto in 2008 [6]. The Ethereum white
paper, titled "Ethereum: A Next-Generation Smart Contract and Decentralized Application Platform,"
was authored by Vitalik Buterin in 2013 [7].

Comprehending blockchain technology can be challenging for the general population [8]. Despite
conducting extensive searches, no accessible and interactive learning modules that effectively explain the
fundamental mechanisms of blockchain, specifically tailored for the community college community, have
been discovered.

To address this gap, an online instructional module has been developed to provide learners with hands-on
experience in comprehending blockchain's inner workings. The module offers insights into data

DOI: 10.5281/zen0do.8313228 JATE 2023, 2, 2

https://zenodo.org/record/8313228

@

structures, transaction verification, consensus mechanisms, and real-world applications beyond
cryptocurrencies, empowering individuals to grasp the transformative potential of blockchain in diverse
industries. By combining theoretical explanations with interactive coding examples, our objective is to
foster a deeper understanding and broader adoption of blockchain in the modern world.

Demonstrating Blockchain Technology Using Python

Our blockchain has two main features: SHA256 and Proof of Work [9]. The SHA, which stands for
Secure Hash Algorithms, was created by the National Security Agency (NSA) of the United States. It is a
collection of cryptographic hash functions designed to ensure data security [8].

SHA256

The SHA256 function converts input data into a hash of 64 seemingly random numbers and letters. For
example, "hi" converted by SHA256 will output
"8f434346648f6h96df89dda901¢c5176b10a6d83961dd3clac88b59b2dc327aa4" and this output is affected
by factors such as uppercase and lowercase letters, spaces, and other symbols in the input. However, the
output hash results are not truly random because each specific input will always have its own unique hash.
Crucially, while the SHA256 function easily computes a hash from a given input (See Figure 1), it is
extremely challenging to reverse-engineer the original input based solely on the hash result [8]. There are
various Secure Hash Algorithms: SHA-1, SHA-224, SHA-256, SHA-384, SHA-512, SHA-512/224, and
SHA-512/256 with different levels of security [8]. SHA256 was used to reproduce the demonstration in
Blockchain 101 - A Visual Demo [7].

Data: | Enter your Data here.
Hash: | ca9cBe65c4db76a0d853aBc51c28e2

Hash Me

Fig. 1. SHA256 Graphic User Interface [9]

Proof of Work

The Proof of Work is a method of validating a block to be added to the blockchain. It is a consensus
mechanism within blockchain and cryptocurrency ecosystems, facilitating transaction verification and
block addition. In this process, miners or participants engage in solving intricate puzzles or mathematical
problems to validate transactions and solidify them on the network [10, 11].

The blockchain learning module used a simple Proof of Work. A hash that starts with four zeros (0000)
indicates that Proof of Work was done on a block. For this demonstration of a simple Proof of Work, the
nonce and data are concatenated to generate the hash. The data never changes but the nonce is increment
by one until the nonce causes the hash to begin with four zeros. (See Figure 2.)

DOI: 10.5281/zen0do.8313228 JATE 2023, 2, 2

https://zenodo.org/record/8313228

@

BlockStatus : valid
Monce: | 100314

Data: | Edit your message here!

Mine

Fig. 2. Proof of Work Graphic User Interface [9]
A Block in a Blockchain

A blockchain consists of valid individual blocks that are linked together. An individual block stores a
transaction, so each block has the following: index, nonce, data, previous hash, and hash. The index is the
numerical position of the block in the blockchain. For example, the third block in the blockchain will
have an index of 2 and not 3. This is because the first block index is 0. The nonce is an integer that
changes when performing Proof of Work. The data stores the transaction details. The previous hash is the
hash result of the previous block. Importantly, the previous hash makes the blockchain secure; it links the
current block to the previous one. The hash is the SHA256 hash result of the concatenation of index,
nonce, data, and previous hash.

The Genesis block is the first block in the blockchain, and it has an index of 0. Because there is no block
before the Genesis block, the previous hash of the Genesis block is defined to be a sequence of 64 zeros.
The system automatically generates the Proof of Work when the Genesis block was created, making it a
valid block with the nonce value 58259.

Suppose two transactions will be added to the blockchain: Robert paid John $1000, and Mary paid Tom
$1688. Assume the blockchain currently only has the Genesis block created. The following process is
performed when adding the transaction "Robert paid John $1000!" to the blockchain as a new block. The
new block index is 1, the nonce starts with 1, data is "Robert paid John $1000!" the previous hash has the
hash result of the Genesis block,
"000045a66e07bledd4fb65ccheaf3lecale2955befbd43975bff6a392164e76f", and hash of the current
block is the SHA256 hash result of "11Robert paid John $1000!", which is
"1ba761f1dbcf91e0d29e06d14d15d813b3f6d7f54¢758¢5f617fh289060b3ad3", which may appear
random but is actually not random. (See Figure 3.)

DOI: 10.5281/zen0do.8313228 JATE 2023, 2, 2

https://zenodo.org/record/8313228

@

BlockStatus : valid BlockStatus : invalid
Index: | O Index:
Nonce: | 58259 Nonce: | 1
Data: | Genesis Block Data: | Robert paid John $1000!
. E
Previous Hash: | 00000000000000000000 Previous Hash: | 00

Hash: @ 0O Hash:

Mine Mine

Fig. 3-1. Genesis block Fig. 3-2. Invalid block-1

To validate this transaction, a nonce value must be found, so the hash result will start with four zeros. The
nonce is incremented one by one. It will take a long time to find the hash result beginning with four zeros.
The probability of getting four zeros at the beginning of the hash result is very small, P = (1/16)"4
because each digit of the hash result could be a number from 0 to 9, or lower-case character from a to f; in
total, there are 16 possibilities [8]. In the Python code, a while loop was used to speed up the search. The
nonce “48871” was found for this block-1 to become valid, with the hash value
“0000a606f7bc866285273¢52ffcfc56049fb60c7dd71a3982961929fct5fadbe™.

(See Figure 4.)

BlockStatus : valid BlockStatus : valid
Index: | O Index:
Nonce: | 58259 Nonce: | 48871
Data: | Genesis Block Data: | Robert paid John $1000!
4 A
Previous Hash: | 00000000000000000000 Previous Hash:

Hash: @ 0O Hash: O

Mine Mine

Fig. 4-1. Genesis block Fig. 4-2. Valid block-1

To add the second transaction, "Mary paid Tom $1688!" to the blockchain, as a new block, the following
process is performed. The new block index is 2, the nonce starts with 1, data is "Mary paid Tom $1688!"
the previous hash has the hash result of the block 1,
"0000a606f7bc866285273e52ffcfc56049fb60c7dd71a398296f929fcf5fa9bc”, and hash of the current
block is the hash result of "21Mary paid Tom $1688!", which is
"fa346022460194672f6728ab696f044d79ebbf1e8336f35450ed33dce5cd7030". (See Figure 5.)

DOI: 10.5281/zen0do.8313228 JATE 2023, 2, 2

https://zenodo.org/record/8313228

@

BlockStatus : valid BlockStatus : valid BlockStatus : invalid

Index: | O Index: | 1 Index: | 2
Nonce: | 58259 = Nonce: | 48871 . Nonce: | 1 -
Data: | Genesis Block Data: | Robert paid John $1000! Data: | Mary paid Tom $1688!

] |)

Previous Hash: | 00000000000000000000 Previous Hash: Previous Hash:

Hash:

92164e

Mine Mine Mine

Fig. 5-1. Genesis block Fig. 5-2. Valid block-1 Fig. 5-3. Invalid block-2

To validate this transaction, a nonce value needs to be found, so that the hash result will start with four
zeros. The nonce is incremented one by one. The nonce “171666” was found for this block-2 to become

valid, with the hash value “0000cb8e1e9d0b1b24cc7abdb862dc27d5047fa3fc0620bb6c1204cd21dbf180™.
(See Figure 6.)

BlockStatus : valid BlockStatus - valid BlockStatus : valid

Index: Index: | 1 Index: | 2

Nonce: | 38259

<>

Nonce: | 48871 Nonce: | 171666

<>
<>

Data: | Genesis Block Data: | Robert paid John $1000! Data: | Mary paid Tom $1688!

Previous Hash: | 00000000000000000000 Previous Hash: Previous Hash:

af31 Hash:

af3 Hash:
92164e

Mine Mine Mine

Fig. 6-1. Genesis block Fig. 6-2. Valid block-1 Fig. 6-3. Valid block-2
Similarly, more blocks can be added to the blockchain, with a lot of computation time and energy.
Why is the Blockchain Tamper-resistant?

The unique property of SHA256 provides the integrity of tamper resistance for the blockchain. To
illustrate this, refer to the blockchain with four valid blocks in Figure 7.

DOI: 10.5281/zen0do.8313228 JATE 2023, 2, 2

https://zenodo.org/record/8313228

@

BlockStatus - valid BlockStatus : valid BlockStatus - valid BlockStatus : valid
Index: | 0 Index: Index: 2 Index: 3
Nonce: | 58259 Nonce: | 48871 Nonce: | 171666 Nonce: | 129744
Data: | Genesis Block Data: | Robert paid John $1000! Data: | Mary paid Tom $1688! Data: | George paid Jennifer $6868!
4 4 A 4
Previous Hash: | 00000000000000000000 Previous Hash: Previous Hash: | 0O Previous Hash: = 0000: 7

Hash: 000« Hash: | 00 Hash: | O Hash: = 00

Mine Mine Mine Mine

Fig. 7-1. Genesis block Fig. 7-2. Valid block-1 Fig. 7-3. Valid block-2 Fig. 7-4. Valid block-3

If someone wants to tamper the block-1 by changing “1000” to “5000”, immediately, the block-1 will
become invalid. (See Figure 8.) To make block-1 valid, one must work hard to find the nonce to make it
valid. Even then, the new hash result will be passed down to the next block, which makes the following
block invalid; similarly, all subsequent blocks become invalid. Unless the person has more than 50% of
the world’s computing power, it is impossible to make all subsequent blocks valid [10, 11].

BlockStatus : valid BlockStatus : invalid BlockStatus : invalid BlockStatus @ invalid

Index 0 Index: | 1 Index: | 2 Index: 3
Nonce: | 58259 Nonce: | 48871 Nonce: | 171666 Nonce: | 128744
Data: | Genesis Block Data: | Robert paid John $5000! Data: | Mary paid Tom $1688! Data: | George paid Jennifer $6868!

Previous Hash: | 00000000000000000000 Previous Hash: | (

Previous Hash: | de Previous Hash: ae91eb1 2bd4 2

Hash: = 000« Hash: ¢ Hash:

Hash: = 97c

Mine Mine Mine Mine

Fig. 8-1. Genesis block Fig. 8-2. Invalid block-1 Fig. 8-3. Invalid block-2 Fig. 8-4. Invalid block-3

Code Development of a Blockchain Learning Module Using Python

The development of our project requires us to research what a blockchain is, how it works, and identify
the necessary features needed for a simple blockchain to work. It starts by reviewing Blockchain 101 - A
Visual Demo [1][7]. In this Visual Demo, Brownworth presents a graphical user interface for each main
concept of a blockchain; SHA256, Proof of Work, and implements them to create an interactive
blockchain.

Our project was carried out through remote collaboration. As a result, online tools were necessary for
coding, file sharing, and communication. Our team scheduled communication meetings via Cisco Webex
and Zoom. The coding was written in Python, and Jupyter Notebook was used to run the scripts.
nanoHUB.org is where all the files were hosted, shared, and executed. Our blockchain module is one of
many tools available to use on nanoHUB.org.

The flowchart in Figure 9 demonstrates how the blockchain operates and presents the logic of the module,
which includes SHA256, Proof of Work, and the complete blockchain.

DOI: 10.5281/zen0do.8313228 JATE 2023, 2, 2

https://zenodo.org/record/8313228

L

Create
Genesis
Block

i

Generate
Hash

i

Add Block

Yes

Fig. 9. Flowchart
Create a Blockchain in Python

Naming conventions are rules for how a programmer names the various parts of a computer code to make
it easy to read [12]. The authors used the lowerCamelCase naming convention [13]. The lowerCamelCase
forms a compound word by uppercase the first letter of each word except the first word and removing the
space between each word. For example, naming the previous hash variable as previousHash, or generate
hash function as generateHash.

DOI: 10.5281/zen0do.8313228 JATE 2023, 2, 2

https://zenodo.org/record/8313228

@

Note: The previousHash is a variable name used in the code to represent the previous hash mentioned in
this paper.

The blockchain module uses the string and hashlib libraries:

import string
from hashlib import sha256

A Blockchain is a chain of linked blocks that were validated by Proof of Work. For this learning module,
a valid Proof of Work is when the hash value starts with four zeros; for example,
""0000a606f7bc866285273e52ffcfc56049fb60c7dd71a398296f929fcf5fadbe™ is a valid hash. The four
zeros for the Proof of Work were chosen because it is manually difficult to find, yet quick for a computer
to generate.

Each block has the following variables to store the block details: index, nonce, data, previousHash, and
hash. The index and nonce variables are an integer, while the data, previousHash, and hash variables are
string.

Note: A string variable stores any character that can be typed from the keyboard.
Here is a code snippet to create a block object:

create new block object to be added to the blockchain
class __ block:
def _init_ (self):

self.index =0
self.nonce = 1
self.data =
self.previousHash =
self.hash = *”

“

The hash is generated by using sha256 from the hashlib library. Here is a code snippet to generate the
hash:

generate hash from block properties: index, nonce, data, previousHash
def generateHash(self, index, nonce, data, previousHash):
return sha256((str(index) + str(nonce) + str(data) + str(previousHash)).encode()).hexdigest()

The Proof of Work function is a simple function that uses a Python while loop: it increments the nonce by
one until the sha256 hash result starts with four zeros.

Note: A loop is repeatedly running the same set of code until a specified condition is met.
Here is a code snippet for the Proof of Work:

generate proof of work by computing a hash that begins with mining zero length (four zeros '0000')
def proofOfWork(self, index, nonce, data, previousHash):

lending length of zero of hash proof of work

MINING_ZERO_LENGTH =4

DOI: 10.5281/zen0do.8313228 JATE 2023, 2, 2

https://zenodo.org/record/8313228

@

set nonce to start from 1
nonce =1

variable to indicate that proof of work was done
Check = False

while check == False:

generate proof of work hash by calling generateHash function
powHash = self.generateHash(index, nonce, data, previousHash)

validate the proof of work

if powHash.find(‘0’ * MINING_ZERO_LENGTH) == 0:
check = True

else:
increment nonce linearly, nonce is only variable that can be changed to computer proof of work
nonce = nonce + 1

return proof of work hash and update nonce
return powHash, nonce

Each valid block object is added to a Python list. Here is the code snippet to create a Python list and add
block object to it:

blockchain list to store each block
chain =]

create a new block
newBlock = self.__block()

update a new block object

newBlock.nonce =1
newBlock.data = “enter your transaction here”

add new block to the chain
self.chain.append(newBlock)

Note: When creating a new block, it needs the last index and previousHash from the chain. The hash is
generated from the concatenated index, nonce, data, and previousHash.

The content of the blockchain should be immutable (cannot be changed). Here is how to display the
content of the blockchain:

display blocks in the blockchain
for x in range(0, 3):
print(f’Index: {chain[x].index}")
print(f’Nonce: {chain[x].nonce}")
print(f’Data: {chain[x].data}")
print(f"Previous Hash: {chain[x].previousHash}")
print(f’hash: {chain[x].hash}")

DOI: 10.5281/zen0do.8313228 JATE 2023, 2, 2

https://zenodo.org/record/8313228

print()

@

Note: For a Python list, the first index starts from zero.

To create the Graphical User Interface (GUI) in Jupyter Notebook, the following libraries must be called

before creating and displaying the widgets:

import GUI libraries
import functools
from IPython.display import display

from ipywidgets import Layout, Label, Text, Textarea, Button, IntText

Here is how to create those widgets:

set width of description

styleDescription = {'description_width’-’initial’}

set width of widgets (Label, Text, IntText, Button)

layoutWidgetWidth = Layout(width="275px”)

set width for Textarea

layoutTextareaWidth = Layout(width="70px”")

label

iAmLabel = Label(
value = ‘enter message here’,
style = styleDescription,
layout = layoutWidgetWidth)

change label value
iAmLabel.value = ‘new message here’

textbox
iIAmTextbox = Text(

description = ’enter input name here?’,

style = styleDescription,
layout = layoutWidgetWidth,
disabled = True)

change textbox value
iAmTextbox.value = ‘5’

intText, to store only integer
iIAmIntText = IntText(

description = ’enter input name here?’,

style = styleDescription,
layout = layoutWidgetWidth)

change inttext value
IAmintText.value = ‘1’

textarea

DOI: 10.5281/zen0do.8313228

JATE 2023, 2, 2

https://zenodo.org/record/8313228

iIAmTextarea = Textarea(
description = 'enter input name here:’,
style = styleDescription,
layout = layoutTextareaWidth,
disabled = False)

change textarea value
iAmTextarea = ‘new content’

button

iAmButton = Button(
description = ’enter button name here’,
style = styleDescription,
layout = layoutWidgetWidth)

display widgets
display(iAmLabel, iAmTextbox, iAmIntText, iAmTextarea, iAmButton)

Live Code Examples from the Blockchain Learning Module

To make an effective learning module, two separate functions were created that focus on understanding
the two key concepts of SHA256 and Proof of Work, with explanations and live code. The live code
allows the user to modify and execute online directly. The code is straightforward, as well as easy to
understand and run. (See Figures 10 and 11.)

def generateHash(data)

1 st

[ne ne. T(J) n Fe a ring or
return sha256((data).encode()) .hexdigest()

type your message below 1n red.

input_data = "Enter your Data here."

this generates the hash from your input_data
hash_result = generateHash(input_data)

display output

print(f"This is your input data: {input_datal")
print(f"This is your sha256 hash result: {hash_result}")

This is your input data: Enter your Data here.
This is your sha256 hash result: ca9c8e65c4dbT76a0d853a8c51c28e26c41a4d4a36d82910348e40e57e99f97a2

Fig. 10. Python code for SHA256 [9]

DOI: 10.5281/zen0do.8313228 JATE 2023, 2, 2

https://zenodo.org/record/8313228

@

from hashlib import sha25é

generate hash from block properties: nonce, data
def generateHash(data, nonce):
return sha256((str(nonce) + str(data)).encode()).hexdigest()
type your message below in red
data = "Edit your message here!”

initialize nonce

nonce = 1

leading Length of zeros of the hash for proof-of-work
MINING_ZERO_LENGTH = 4
creating an amount of zeros that satisfies computing the proof of work

mine = '@ * MINING_ZERO_LENGTH

variable to indicate that proof of work was done
is_walid = False

process of mining

while is valid == False:
new hash for the added block
hash_result = generateHash(data, nonce)

validate the proof of work
using string method to search for the MINING ZERO LENGTH in beginning of the hash
if hash_result.find(mine) == @&:
is_valid = True
else:

#
#

increment nonce. nonce is only variable that can be change to compute proof of work
nonce = nonce + 1

T T T
outputs

print(f'This is your input data: {data}")

print(f'This is your obtained nonce for Proof of Work: {nonce}’)
print(f'This is your sha256 result: {hash_result}")

print(f'Is the status walid?: {is_valid}')

This is your input data: Edit your message here!
This is your obtained nonce for Proof of Work: 188314

This is your sha256 result: 980@6cd3826d35bbB27f517b61384b4c3c9a9a7c8b4734247b6b48058dbB3427
Is the status valid?: True

Fig. 11. Python code for Proof of Work [9]

The Implementation of the Blockchain Development

Ten students from a College Algebra class (Math 3) and eighteen students from a Calculus class (Math
5A) at Pasadena City College and thirty-three students from a Calculus class (Math 190) at EI Camino
College participated in reviewing the blockchain learning module and then filling out the survey. As a
guest speaker, an instructor briefly introduced students to the blockchain and then showed the blockchain
video to the class. She encouraged students to participate in interactive activities for testing the tool. The
total time spent working on the module was 40 minutes on average.

A sixteen-question survey was designed to capture learning outcomes and experiences. Eighty-one
individuals, including instructors and students, completed the survey, and the feedback overall was
positive. Figures 12-1, 12-2, 12-3 and 12-4 presents four images of students practicing the developed
module. Students were asked to rank their experiences completing the module from 1 to 5, with 5 being
the best experience.

DOI: 10.5281/zen0do.8313228 JATE 2023, 2, 2

https://zenodo.org/record/8313228

= AN
. S -

Fig. 12-4. Practicing blockchain Iearningfmoule in a Calculus class at EI Camino College'

DOI: 10.5281/zen0do.8313228 JATE 2023, 2, 2

https://zenodo.org/record/8313228

@

Students were asked: “Describe your overall experience using the blockchain tools.” and “How well
did the tool help with understanding general blockchain terminology?” Most respondents (91%) said
they better understood the blockchain technology (rank 3, 4, or 5). Only one student selected rank 1,
indicating that almost all respondents (99%) had a positive experience. The responses were encouraging,
including “I believe that | have a better understanding of blockchain technology and terminology” and “I
feel significantly better being | have had no prior experience with blockchain tools, and now | have a
better understanding of the mechanism of blockchain and why it can be used for financial transactions.”
“| feel, after this tool, my understanding definitely got better, especially about the technical
implementation part. | like the process of playing with GUI first, and then look[ing] at the code. This
learning experience builds a separation of abstraction, help[ed] me to learn the content step-by-step.”
“Never heard of blockchain, I like the justification of how secure the blockchain is. | feel the system is
thought out well.” “I really enjoyed this module! Thank you for organizing this tool and presentation.
I've used cryptocurrency years ago, but never really understood how it worked. Now | understand how
powerful and secure block chains can be and why people have so much trust in the value of
cryptocurrency.” “I had no understanding of how blockchain worked beforehand, but this lesson very
simply summarized it and explained its functionality using hands on resources. Thank you very
much!”

To survey the content usability, students were additionally asked: “For the content of this tool, please
kindly give us your comments and/or suggestions to improve it.” Most respondents (90%) said the
content was clear (rank 3, 4, or 5). One respondent emphasized the usefulness of watching the blockchain
video before or while testing the learning module, saying: “Once | watched the video [...] everything
[was] so clear.” Another respondent said, “Put the blockchain videos before [the] introduction.” Others
provided suggestions to improve users’ experience in learning the content. The following are three
examples.
“For the video, perhaps subtitles can be included to help understand what speakers are saying.”
“I think that having multiple tabs may make it a bit harder to navigate, especially for those
without a larger monitor as they wouldn't be able to see both the presentation and module at the
same time.”
“I feel that this tool is an overall good tutorial for technical concepts. If | have any suggestions, |
would say that some content, such as the formula for calculating the hash, was explicitly
mentioned in the presentation video ... but not in the notebook. Personally, I believe it would be
helpful to improve the documents by including some information from the video. This will help
users review the concepts and follow the flow better. Additionally, I think it would be beneficial
to attach a quick, visually appealing, and entertaining YouTube video that talks about blockchain
applications and why it works before presenting the entire tool. Through this, users will be more
inclined to learn more about blockchain and, as a result, take a look at this technical tool.”

In a continued effort to survey usability, students were asked: “For the layout or structure of this tool,
please kindly give us your comments and/or suggestions to improve it.” One respondent suggested
including more pictures, and one respondent recommended the nanoHUB.org administration consider
using Jupyter Lab instead of Jupyter Notebook so that there would be a table of contents on the left side
which would allow users to navigate among different sessions easily. Additionally, some respondents
suggested improving the layout so that it would be easy for users to access the video while using the tool.

“] strongly believe, with no prior experience, the interface and layout for the tutorial are very
approachable. Everything is Clear and Concise as well as the video helps. My only advice is
putting the video along with the tool.”

“Possibly having the presentation video and tools be usable on the same page.”

DOI: 10.5281/zen0do.8313228 JATE 2023, 2, 2

https://zenodo.org/record/8313228

@

Most people found the layout reasonably easy to follow and understand, saying:
"l think it is good because it breaks down to the basic SHA256 and uses it to explain [Proof of
Work], so that I can easily understand the whole mechanism of blockchain."
“The layout is fairly easy to understand. The fact that it opens a new window for each notebook
or section makes it easier to navigate back to the main page by just exiting out of that one

notebook.
What is your overall experience How well did the tool help with
using the blockchain tool? understanding general blockchain
77% of the reviewers rated 3 or higher terminology?

91% reviewers rated 3 or higher

27
32
22
25

13 13 17

6
[1 -

1 2 3 4 S5 1 2 3 4 5

Fig. 13-1. Survey results with sample size 81 Fig. 13-2. Survey results with sample size 81

How likely are you to recommend your peers How clearly were the tutorials in the
to use this learning module to learn about instructional module presented?
blockchain technology? 90% of the reviewers rated 3 or higher

89% of the reviewers rated 3 or higher
30

28
26
21 22
18
: ; I : :
[] 7 ==
1 2 3 4 L3 1 2

3 4 5

Fig. 13-3. Survey results with sample size 81 Fig. 13-4. Survey results with sample size 81

Conclusion

This paper presents an original online tool that instructs the mechanism and code behind blockchain
technology. The online tool is freely available, and the instructions provide sufficient information to learn
and apply blockchain technology. The general reaction from instructors and students was that the modules
helped them understand blockchain. It is expected that the tool will be expanded and improved according
to the feedback and suggestions and more systematically disseminated to various groups of people beyond
students at community colleges, including local middle and high school students, as well as people at
work.

Acknowledgments

This work was supported by National Science Foundation under DUE ATE #2000281, the Micro Nano
Technology Collaborative Undergraduate Research Network (MNT-CURN), and the Network for
Computational Nanotechnology (NCN) - home of nanoHUB.org. The authors would like to express
special thanks to Professor Jared Ashcroft at Pasadena City College, Dr. Brian Hyun-jong Lee, Dr.
Shivam Tripathi, Dr. Tanya Faltens, and Juan Carlos Verduzco at Purdue University for the valuable
discussions and guidance over the past two years. The authors would also like to thank Professor Jie
Zhong at Cal State Los Angeles, Professor Valerie Carr, Professor Morris Jones and Professor Wendy
Lee from San Jose State University, Professor Kun Niu from El Camino College, Professor Michelle

DOI: 10.5281/zen0do.8313228 JATE 2023, 2, 2

https://zenodo.org/record/8313228

@

Guo, Professor Michelle Ingram, Professor Fendi He, Professor Dave Smith, Professor Erin Shaw,
Professor Thomas Thoen from Pasadena City College, and student Kevin D. Ethridge from Community
College of Philadelphia, student Melody Huang from Cornell University, student Janet Tang from MIT,
student Sophia Barber from UC San Diego, student Melinda Wu from UC Riverside, students Anthony
Ko, Gayvalin Tammy Sujaritchai, Jingchao Zhong, David Tao, Jan Poster, Jocelyn Zhu, Jasmine Lai,
Joya Stewart, Thet Paing Da Na, Pete Chayapirad, a class of Calculus from EI Camino College, a class of
College Algebra and a class of Calculus from Pasadena City College, student Daniel Weiss from
Peninsula High School, students John Xie, Ben Yeh, Sydney Hsu, and Eric Qiu from Arcadia High
School for their suggestions and feedback and/or conducting the practicing of this learning tool in their
classes or groups.

Disclosure
The authors declare no conflicts of interest.

References

[1] G. Habib, S. Sharma, S. Ibrahim, I. Ahmad, S. Qureshi, & M. Ishfaq, (2022). Blockchain technology:
Benefits, challenges, applications, and integration of Blockchain technology with cloud computing.
Future Internet, 14(11), 341. https://doi.org/10.3390/fi14110341
https://www.proguest.com/docview/2748280995?pg-origsite=summon.

[2] S. Chouhan, "Blockchain Features May Control Inflation", International Journal of Science and
Research (1JSR), Volume 12 Issue 7, July 2023, pp. 1315-1317,
https://www.ijsr.net/getabstract.php?paperid=SR23717225333.

[3] I. loannou, G. Demirel, Blockchain and supply chain finance: a critical literature review at the
intersection of operations, finance and law. J BANK FINANC TECHNOL 6, 83-107 (2022).
https://doi.org/10.1007/s42786-022-00040-1.

[4] P. Sharma, R. Jindal, & M.D. Borah, A Review of Blockchain-Based Applications and Challenges.
Wireless Pers Commun 123, 1201-1243 (2022). https://doi.org/10.1007/s11277-021-09176-7.

[5] Vitasek, K., Bayliss, J., Owen, L., and Srivastava, N., Harvard Business Review, (2022, May). How
Walmart Canada Uses Blockchain to Solve Supply-Chain Challenges.

[6] S. Nakamoto, (2008). Bitcoin: A Peer-to-Peer Electronic Cash System. Retrieved from
https://bitcoin.org/bitcoin.pdf.

[7] A. Brownworth, Introductory video by Anders Brownworth: Blockchain 101 - A Visual Demo.

[8] FIPS PUB 180-4 FEDERAL INFORMATION PROCESSING STANDARDS PUBLICATION
Secure Hash Standard (SHS)

chrome-
extension://efaidnbmnnnibpcajpcglclefindmkaj/https://nvipubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-
4.pdf.

[9] O. Douglin, Y. Chang-Hou, A. Morez, B. Lee, S. Tripathi, A. Strachan, (2022, March). nanoHUB,
Blockchain and Proof of Work Lab, https://nanohub.org/resources/35369/aboutf#citethis.

[10] Banafa, Ahmed. Blockchain Technology and Applications. 1st ed., River Publishers, 2020.
https://caccl-
pcc.primo.exlibrisgroup.com/permalink/01CACCL_PCC/1hls13v/alma991001327569605270.

[11] P. R. Nair and D. R. Dorai, "Evaluation of Performance and Security of Proof of Work and Proof of
Stake using Blockchain,” 2021 Third International Conference on Intelligent Communication
Technologies and Virtual Mobile Networks (ICICV), Tirunelveli, India, 2021, pp. 279-283, doi:
10.1109/1CICV50876.2021.9388487.

[12] "Naming Conventions." In Principles of Programming and Coding, edited by Donald R.
Franceschetti, 200-203. Ipswich, MA: Salem Press/Grey House, 2018. Gale eBooks (accessed August 28,
2023). https://link-gale-

DOI: 10.5281/zen0do.8313228 JATE 2023, 2, 2

https://zenodo.org/record/8313228
https://doi.org/10.3390/fi14110341
https://www.proquest.com/docview/2748280995?pq-origsite=summon
https://www.ijsr.net/getabstract.php?paperid=SR23717225333
https://doi.org/10.1007/s42786-022-00040-1
https://doi.org/10.1007/s11277-021-09176-7
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
https://www.youtube.com/watch?v=_160oMzblY8&ab_channel=AndersBrownworth
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf
https://nanohub.org/resources/35369/about#citethis
https://caccl-pcc.primo.exlibrisgroup.com/permalink/01CACCL_PCC/1hls13v/alma991001327569605270
https://caccl-pcc.primo.exlibrisgroup.com/permalink/01CACCL_PCC/1hls13v/alma991001327569605270
https://link-gale-com.ezp.pasadena.edu/apps/doc/CX7384400104/GVRL?u=pasa19871&sid=bookmark-GVRL&xid=8b0f7751

@

com.ezp.pasadena.edu/apps/doc/CX7384400104/GVRL?u=pasal9871&sid=bookmark-
GVRL&Xxid=8b0f7751.

[13] “CamelCase.” 2007. New Scientist 196 (2627): 58. https://search-ebscohost-
com.ezp.pasadena.edu/login.aspx?direct=true&db=f6h&AN=27506966&site=ehost-live.

DOI: 10.5281/zen0do.8313228 JATE 2023, 2, 2

https://zenodo.org/record/8313228
https://link-gale-com.ezp.pasadena.edu/apps/doc/CX7384400104/GVRL?u=pasa19871&sid=bookmark-GVRL&xid=8b0f7751
https://link-gale-com.ezp.pasadena.edu/apps/doc/CX7384400104/GVRL?u=pasa19871&sid=bookmark-GVRL&xid=8b0f7751
https://search-ebscohost-com.ezp.pasadena.edu/login.aspx?direct=true&db=f6h&AN=27506966&site=ehost-live
https://search-ebscohost-com.ezp.pasadena.edu/login.aspx?direct=true&db=f6h&AN=27506966&site=ehost-live

	Introduction
	Demonstrating Blockchain Technology Using Python
	Code Development of a Blockchain Learning Module Using Python

